AI-1552 CV-19 M.A./M.Sc. (Final)

Term End Examination, 2020-21 MATHEMATICS

(Operations Research) Paper - VIII

Time: Three Hours

[Maximum Marks : 100 [Minimum Pass Marks : 36

Note: Answer any five questions. All questions carry equal marks.

- 1. (a) Define Or and discuss its scope.
 - (b) Solve the L.P.P.

$$MaxZ = 3x_1 + 5x_2 + 4x_3$$

s.t.
$$2x_1 + 3x_2 \le 8$$

$$2x_1 + 5x_2 \le 8$$
$$2x_2 + 5x_3 \le 10$$

$$3x_1 + 2x_2 + 4x_3 \le 15$$

and
$$x_1, x_2, x_3 \ge 0$$

- 2. || State and prove fundamental Theorem of Linear Programming
- 3. Solve following L.P.P. by the dual simplex Algorithm

$$MinZ = x_1 + 2x_2 + 3x_3$$

s.t.
$$2x_1 - x_2 + x_3 \ge 4$$

$$x_1 + x_2 + 2x_3 \le 8$$

$$x_2 - x_3 \ge 2$$

and
$$x_1, x_2, x_3 \ge 0$$

4. For the following L.P.P.

$$Min = \lambda x_1 - \lambda x_2 - x_3 + x_4$$

s.t.
$$3x_1 - 3x_2 - x_3 + x_4 \ge 5$$

$$2x_1 - 2x_2 + x_3 - x_4 \le 3$$

and
$$x_1, x_2, x_3, x_4 \ge 0$$

Find the range of λ over which the solution remain bsic feasible and optional

5. Solve the following transportation problem

From	То			Committee
	1	2	3	Supply
1	2	7	4	5
2	3	3	1	8
3	5	4	7	7
4	1	6	2	14
Demand	7	9	18	24

- 6. (a) Write a note on dynamic programming.
 - (b) Solve by dynamic programming method.

Max
$$Z = x_1, x_2, x_3$$

s.t.
$$x_{1} + x_{2} + x_{3} = 5$$

$$x_1, x_2, x_3 \ge 0$$

(a) Solve the game by graphical method.

$$A \begin{vmatrix} 2 & -1 & 5 & -2 & 6 \\ -2 & 4 & -3 & 1 & 0 \end{vmatrix}$$

(b) Use the concept of dominance to solve the game whose pay – off matrix to the player Λ is

Draw a Network diagram on the basis of the following data

Activity	Duration(days)
1 - 2	2
1 - 4	2
1 – 7	1
2 – 3	4
3 – 6	1
4 – 5	5
4 – 8	8
5 – 6	4
6 - 9	3
7 – 8	3
8 – 9	2
9 – 10	2

Find the critical path, total duration and slack times.

- 9. Write a note on
 - (i) Petroleum refinery operations
 - (ii) Input/Output analysis
 - (iii) leontief system
 - (iv) Decomposable economics
- 10. Write the dual of the following L.P.P. and solve. Find the solution of primal by final simplex table of dual problem.

$$\begin{aligned} \text{MaxZ} &= 30x_{1} + 23x_{2} + 29x_{3}\\ \text{s.t.} &\quad 6x_{1} + 5x_{2} + 3x_{3} \leq 26\\ &\quad 4x_{1} + 2x_{2} + 5x_{3} \leq 7\\ \text{and} &\quad x_{1}, \, x_{2}, \, x_{3} \geq 0 \end{aligned}$$